今回の講演会は,対面とWeb会議ツールZoomのハイブリッド形式で開催します.
対面でご参加される方は下記の講義室へお越し下さい(フォーム記入は不要です).
オンラインで講演聴講をご希望の方は下記フォームへの記入・送信をお願いします[〆切:7/24(水)].記入いただいたメールアドレス宛に講演聴講のためのZoomのミーティングURLおよびパスワードが送信されます.
日時: | 2024年7月26日(金)16:30-17:30 |
場所: | 京都大学 桂キャンパスCクラスタ総合研究棟III(C3棟) 3階 b3n03室(航空宇宙工学専攻会議室) |
講演: | The 3D kinetic Couette flow via the Boltzmann equation in the diffusive limit |
Prof. Renjun Duan (Department of Mathematics, The Chinese University of Hong Kong, Hong Kong) | |
要旨: |
We study the Boltzmann equation for the 3D kinetic Couette flow describing the motion of a rarefied gas confined by two parallel infinite plates moving tangentially relative to each other with opposite velocities. Specifically, we focus on the Boltzmann equation in the diffusive limit in a 3D periodic channel domain with the diffusive reflection boundary condition imposed on the plates and an external force present. Using a perturbation approach, we establish the existence of the stationary solution to the steady problem and further obtain the exponential asymptotic stability for the time-dependent problem near the obtained stationary 3D kinetic Couette flow. This result implies that the first-order approximation of the Boltzmann solutions for small Knudsen numbers is determined by the perturbed incompressible Navier-Stokes-Fourier system with the external force around the Couette flow in fluid dynamics. A key feature of our approach is to construct solutions in the Lagrangian frame with the bulk velocity for the fluid Couette flow connecting the same velocities of two moving plates. As a consequence, it appears that the shearing force makes solutions have only a polynomial tail for large velocities. |