Monthly Archives: November 2020

分科会「非平衡流体への運動学的アプローチ」(第3回)

今回の講演会はWeb会議ツールZoomを利用して開催します.

講演聴講をご希望の方は下記フォームへの記入・送信をお願いします.記入いただいたメールアドレス宛に講演聴講のためのZoomのミーティングURLおよびパスワードが送信されます.

登録フォーム

日時: 2020年12月16日(水) 16:15-17:15
場所: オンライン開催
講演: Recent Developments of Nonequilibrium Thermodynamic Theories of Gases
Prof. Takashi Arima (Department of Engineering for Innovation, National Institute of Technology, Tomakomai College, Japan)
有馬 隆司 准教授 (苫小牧工業高等専門学校 創造工学科 総合自然科学系)
要旨: Nonequilibrium thermodynamic theories of continuous media of which applicable range goes beyond the local thermodynamic equilibrium have been developed. Starting from the pioneering works of Grad in the context of kinetic theory, of Cattaneo for a rigid heat conductor, and of Müller for the first phenomenological version of extended thermodynamics, several attempts have been made, for example, Rational Extended Thermodynamics, Extended Irreversible Thermodynamics, General Equation for the Nonequilibrium Reversible–Irreversible Coupling, the regularized moment approach, and others. In this talk, we present the state of the art on these modern nonequilibrium theories focusing on Rational Extended Thermodynamics. In particular, we consider rarefied gases and discuss the linkage with the kinetic theory. Conceptual discussions of the differences among these nonequilibrium theories are also summarized.

分科会「非平衡流体への運動学的アプローチ」(第2回)

今回の講演会はWeb会議ツールZoomを利用して開催します.

講演聴講をご希望の方は下記フォームへの記入・送信をお願いします.記入いただいたメールアドレス宛に講演聴講のためのZoomのミーティングURLおよびパスワードが送信されます.

登録フォーム

日時: 2020年11月27日(金) 16:15-17:15
場所: オンライン開催
講演: Some formulations of the volume force in the immersed boundary method and a new approach in combination with the lattice Boltzmann method
Prof. Kosuke Suzuki (Institute of Engineering, Academic Assembly, Shinshu University, Japan)
鈴木 康祐 准教授 (信州大学 学術研究院 (工学系) )
要旨: One of the important issues in computational fluid dynamics is to simulate moving-boundary flows efficiently. The immersed boundary method (IBM), which was proposed by Peskin in 1970s in order to simulate blood flows in the heart, has been reconsidered as an efficient method for simulating moving-boundary flows on a fixed Cartesian grid. In the IBM, it is assumed that the boundary is regarded as an infinitely thin shell, an incompressible viscous fluid fills in both inside and outside of the boundary, and the no-slip condition on the boundary is satisfied by volume force applied only near the boundary. The way to determine the volume force is the key concept of the IBM. In this talk, I introduce some formulations of the volume force in the IBM. Then, I present a new approach in combination with the lattice Boltzmann method (LBM). In this approach, the volume force of the IBM is regarded as the discontinuity of the stress tensor, and the stress tensor is calculated from the desired particle distribution functions of the LBM. This approach enables us to calculate the stress tensor on the boundary which is blurred by the volume force.