Category Archives: 非平衡流体への運動学的アプローチ

分科会「非平衡流体への運動学的アプローチ」(第2回)

今回の講演会はWeb会議ツールZoomを利用して開催します.

講演聴講をご希望の方は下記フォームへの記入・送信をお願いします.記入いただいたメールアドレス宛に講演聴講のためのZoomのミーティングURLおよびパスワードが送信されます.

登録フォーム

日時: 2020年11月27日(金) 16:15-17:15
場所: オンライン開催
講演: Some formulations of the volume force in the immersed boundary method and a new approach in combination with the lattice Boltzmann method
Prof. Kosuke Suzuki (Institute of Engineering, Academic Assembly, Shinshu University, Japan)
鈴木 康祐 准教授 (信州大学 学術研究院 (工学系) )
要旨: One of the important issues in computational fluid dynamics is to simulate moving-boundary flows efficiently. The immersed boundary method (IBM), which was proposed by Peskin in 1970s in order to simulate blood flows in the heart, has been reconsidered as an efficient method for simulating moving-boundary flows on a fixed Cartesian grid. In the IBM, it is assumed that the boundary is regarded as an infinitely thin shell, an incompressible viscous fluid fills in both inside and outside of the boundary, and the no-slip condition on the boundary is satisfied by volume force applied only near the boundary. The way to determine the volume force is the key concept of the IBM. In this talk, I introduce some formulations of the volume force in the IBM. Then, I present a new approach in combination with the lattice Boltzmann method (LBM). In this approach, the volume force of the IBM is regarded as the discontinuity of the stress tensor, and the stress tensor is calculated from the desired particle distribution functions of the LBM. This approach enables us to calculate the stress tensor on the boundary which is blurred by the volume force.

分科会「非平衡流体への運動学的アプローチ」(第1回)

今回の講演会はWeb会議ツールZoomを利用して開催します.

講演聴講をご希望の方は下記フォームへの記入・送信をお願いします.記入いただいたメールアドレス宛に講演聴講のためのZoomのミーティングURLおよびパスワードが送信されます.

登録フォーム

日時: 2020年7月22日(水) 15:00-16:00
場所: オンライン開催
講演: Mathematical Analysis of Moving Boundary Problems in the Kinetic Theory of Gases (分子気体力学における移動境界問題の数学解析)
Dr. Kai Koike (Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Japan)
小池 開 氏 (日本学術振興会 特別研究員(PD))
要旨: Moving boundary problems for kinetic equations have become an active area of research mainly due to its importance in MEMS applications. It has also proved to be a source of interesting mathematical problems. Despite this, it’s mathematical theory has not developed to a satisfactory level although there are some recent progresses. In this talk, I would like to review these results hoping to stir interaction between the engeneering and the mathematical community further, which has always been an important element in this field.