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Sone Manifold

1-D Stationary Boltzmann equation Boltzmann equation:

ξ1∂x f =
1
k

Q(f, f).

Goal:

To construct the invariant manifolds using the Greens
function approach.
To study the coupling of Knudsen-type boundary layers
and the fluid-like interior waves.
Key: Construction of Sone Manifold.

In collaboration with Shih-Hsien Yu.
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Boltzmann equation:

∂t f + ξ · ∂x f =
1
k

Q(f, f).

Transport: ∂t f + ξ · ∂x f
Collision operator:
Q(f, f)(ξ) ≡

∫
R3

∫
S2

+
[f(ξ′)f(ξ′∗)− f(ξ)f(ξ∗)]B(|ξ − ξ∗|, θ)dΩdξ∗.{
ξ′ = ξ − [(ξ − ξ∗) · Ω]Ω,

ξ′∗ = ξ∗ + [(ξ − ξ∗) · Ω]Ω.

The function B(|ξ − ξ∗|, θ) encodes the basic physical property
of the inter-molecular potential. We will consider the hard
sphere models B = |(ξ − ξ∗) · Ω| = |ξ − ξ∗| cos θ.
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Conservation laws for the macroscopic variables:

∫
R3

 1
ξ

1
2 |ξ|

2

 [∂t f + ξ · ∂x f ]dξ =

∫
R3

 1
ξ

1
2 |ξ|

2

Q(f , f )dξ = 0.

∂tρ+ ∂x · (ρv) = 0, mass,

∂t (ρv) + ∂x · (ρv × v + P) = 0, momentum,

∂t (ρE) + ∂x · (ρvE + Pv + q) = 0, energy.
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H-Theorem, Irreversibility H ≡
∫

R3 f log fdξ, ~H ≡
∫

R3 ξf log fdξ:

∂tH + ∂x · ~H =
1

4k

∫
R3

∫
S2

+

log
ff∗
f ′f ′∗

[f ′f ′∗ − ff∗]BdΩdξ∗dξ ≤ 0,

= 0 if and only if

f(x , t , ξ) =
ρ(x , t)

(2πRθ(x , t))3/2 e−
|ξ−v(x,t)|2

2Rθ(x,t) ≡ M(ρ,v ,θ) Maxwellian.

on 5-dimensional thermo-equilibrium manifold, Q(f , f ) = 0:

{f | f = M(ρ,v ,θ), ρ > 0, θ > 0, v ∈ R3}.

The H-Theorem says that there is a tendency for the solution f
of the Boltzmann equation to approach the equilibrium
manifold.
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Boltzmann equation

∂t f + ξ · ∂x f =
1
k

Q(f , f ).

At thermo-equilibrium, f = M, the conservation laws become
the Euler equations in gas dynamics:

∂tρ+ ∂x · (ρv) = 0,
∂t (ρv) + ∂x · (ρv × v + pI) = 0,
∂t (ρE) + ∂x · (ρvE + pv) = 0.

Fluid dynamics, thermodynamics phenomena occur around the
thermo-equilibrium manifold.
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To study the flows near the equilibrium manifold, linearize the
Boltzmann equation around a fixed Maxwellian f = M +

√
Mg :

gt + ξ · ∂xg = Lg, linearized Boltzmann equation,

The linearized collision operatorLg = 2Q(
√

Mg,M)√
M

has kernel the
tangent plane to the equilibrium manifold therough M:

Lg = 0 for g ∈ span{
√

M, ξ
√

M, |ξ|2
√

M}.

Macro projection P0: the projection onto the kernel of L.
Micro projection: P1 ≡ I − P0.
Macro-Micro decomposition g = P0g + P1g ≡ g0 + g1.
H-Theorem Lg1 ≤ −νg1 for some constant ν > 0.

Tai-Ping Liu Sone Manifold for Stationary Boltzmann Equation



Sone Manifold

Linearized Euler equations, 1-dimensional,

(g0)t + P0(ξ1g0)x = 0.

Euler characteristics:{
P0ξ

1P0Ei = λiEi , λi Euler speeds, Ei Euler directions,

{λ1, λ2, λ3} = {−c + u,u,c + u} , c =
√

5θ
3 , (sound speed at rest),

Navier-Stokes equations:

(g0)t + (P0ξg0)x = [−kL−1(P1ξg0)x ]x ,

Navier-Stokes viscosity and heat conductivity :

Aj = Aj(θ) = −k
(

P1ξ
1Ej ,L−1(P1ξ

1Ej)
)
, j = 1,2,3.

Tai-Ping Liu Sone Manifold for Stationary Boltzmann Equation



Sone Manifold

1-dimensional Green’s function{
(−∂τ − ξ∗∂y − L)G(x − y , t − τ, ξ, ξ∗) = 0,
G(x − y ,0, ξ, ξ∗) = δ1(y − x)δ3(ξ∗ − ξ).

The Green’s function contains the particle-like wave and the
fluid-like waves in the Euler wave direction Ek with
Navier-Stokes dissipations Ak ≡ −(P1ξ

1Ek ,L−1P1ξ
1Ek ):

Theorem

G(x , t , ξ; ξ∗) = e−ν(ξ∗)tδ(x − ξ1t)δ3(ξ − ξ∗)

+
3∑

k=1

e−
(x−λk t)2

4Ak (t+1)√
4Akπ(t + 1)

Ek (ξ)Ek (ξ∗) + · · · ;
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Invariant manifods, the linear theory

ξ1∂xg =
1
k

Lg.

Definition

L∞ξ,3 ≡ {h : sup
ξ
|h|(1 + |ξ|)3 <∞} = S ⊕ C ⊕ U

is a stable-center-unstable invariant manifolds decomposition
for the linear stationary Boltzmann equation ξ1∂xg = 1

k Lg if
for any given h ∈ S, there exists a solution g to the
equation for x > 0 with g|x=0 = h, g(x)→ 0 as x →∞,
for any given h ∈ U, there exists a solution g to the
equation for x < 0 with g|x=0 = h, g(x)→ 0 as x → −∞,
any given h ∈ C is a constant solution of the equation.

Tai-Ping Liu Sone Manifold for Stationary Boltzmann Equation



Sone Manifold

We will start with the time-dependent equation

∂tg + ξ1∂xg =
1
k

Lg, x > 0,

and use the time-asymptotic analysis to construct the
stationary solution:

ξ1∂xg =
1
k

Lg, x > 0.

To obtain time-asymptotic convergence, we need:
Time-asymptotic compactness.
Suitable boundary flux at x = 0,±∞.
These require pointwise control of the time dependent
solutions, thereby the Green’s function approach.

Tai-Ping Liu Sone Manifold for Stationary Boltzmann Equation



Sone Manifold

Euler projections Bj , j = 1,2,3,

Bjk ≡ (Ej , k)Ej , B+ ≡
∑
λk>0

Bk , upwind Euler projections,

Euler Flux Projections B̃j , j = 1,2,3,

B̃jg ≡
(Ej , ξ

1g)Ej

λj
, B̃+ ≡

∑
λk>0

B̃k , upwind Euler flux projections.
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Theorem
If λj , j = 1,2,3, are non-zero, then for any h ∈ L∞ξ,3, g(x) = Sxh
and g(x) = Uxh given below are solution of ξ1∂xg = 1

k Lg:
Stable steady linear Boltzmann flows{

Sxh ≡
∫∞

0 G(x , s)ξ1(1− B̃+)hds,
Sxh = O(1)e−α|x |, x →∞

Unstable steady linear Boltzmann flows{
Uxh ≡ −

∫∞
0 G(x , s)ξ1(1− B̃−)hds,

Uxh = O(1)e−α|x |, x → −∞

Linear Stable-Center-Unstable Decomposition

L∞ξ,3 = S ⊕ C ⊕ U, S ≡ S0+(L∞ξ,3), C ≡ P̃0(L∞ξ,3), U ≡ U0−(L∞ξ,3)
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Lemma (Stable manifold)
For any b ∈ L∞ξ,3, g ≡ Sb solves the linear stationary Boltzmann
equation for x > 0 and g→ 0 as x →∞.

The source has no upwind Euler
componentB+ξ

1(b− B̃+b) = 0, and so the convolution with the
Green’s function satisfies:

‖g(x)‖L∞ξ,3 =

∥∥∥∥ lim
t→∞

∫ t

0
G(x , t − τ)[ξ1(b− B̃+b)]dτ

∥∥∥∥
L∞ξ,3

≤ lim
t→∞

O(1)

∫ t

0

∑
λj>0

e−
|x−λj (t−τ)|2

C(t−τ)

(t − τ + 1)
+
∑
λj<0

e−
|x−λj (t−τ)|2

C(t−τ)√
(t − τ + 1)


·
∥∥∥(1 + |ξ1|)b

∥∥∥
L∞ξ,3

dτ =

(
O(1)√
1 + x

+ e−x/C
)
‖b‖L∞ξ,3 .
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Lemma (Gauss Lemma)
For any b ∈ L∞ξ,3,

b =

∫ ∞
0

G(0+, τ)[ξ1b]dτ −
∫ ∞

0
G(0−, τ)[ξ1b]dτ.

The only distribution in G is h0 = δ(x − ξ1t)δ3(ξ − ξ∗)e−ν(ξ∗)t :∫ ∞
0

G(0+, τ)[ξ1b]dτ −
∫ ∞

0
G(0−, τ)[ξ1b]dτ

=

∫ ∞
0

h0(0+, τ)[ξ1b+]dτ−
∫ ∞

0
h0(0−, τ)[ξ1b−]dτ = b++b− = b,

where b±:{
b+(ξ) = b(ξ) for ξ1 > 0,
0 else,

b−(ξ) =

{
b(ξ) for ξ1 < 0,
0 else.
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Lemma (Invariant manifolds decomposition)
For any b ∈ L∞ξ,3,

b = P̃0b + S0+b + U0−b,

S0+B̃− = U0−B̃+ = 0,
S0+U0−b = U0−S0+b = 0.

b =

∫ ∞
0

G(0+, τ)[ξ1b]dτ −
∫ ∞

0
G(0−, τ)[ξ1b]dτ [Gauss]

=

∫ ∞
0

G(0+, τ)[ξ1(1− B̃+)b]dτ +

∫ ∞
0

G(0+, τ)[ξ1B̃+b]dτ

−
∫ ∞

0
G(0−, τ)[ξ1(1−B̃−)b]dτ−

∫ ∞
0

G(0−, τ)[ξ1B̃−b]dτ [definition]

= S0+b + B̃+b + U0−b + B̃−b = P̃0b + S0+b + U0−b.
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Lemma (Exponential decay)

For some positive constant α = O(1)k min{|λj |, j = 1,2,3, } the
stationary solution g ≡ Sb satisfies

‖g(x)‖L∞ξ,3 = O(1)e−α|x | ‖b‖L∞ξ,3 , x →∞.

Similarly for g ≡ Ub satisfies

‖g(x)‖L∞ξ,3 = O(1)e−α|x | ‖b‖L∞ξ,3 , x → −∞.

Proof.
The estimate from Green’s function pointwise estimates yield
algebraic rate. The exponential rate is proved by the weighted
energy method.
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The boundary layers thus obtained are of the
Knudsen-type.
The linear theory can be generalized to the nonlinear
theory using standard techniques in the dynamical system
because of the spectral gap α > 0. This is a weakly
nonlinear theory, with the strength of the nonlinearity of the
order of α.
The spectral gap vanishes,
α = O(1)k min{|λj |, j = 1,2,3, } → 0, as some λj → 0.
Physically, when one of the Euler characteristics is near
zero, there is the coupling of the boundary Knudsen-type
wave with one of the fluid-like waves. A strong nonlinear
theory is needed here.
the explicit construction of the Sone Manifold is the
essential step.
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Construction of Sone Manifold

Step I. Subsonic condensation

The Sone Manifold consists of Knudsen-type boundary
waves for supersonic condensation.
Consider small λ3 = ε, transonic condensation.
Slowly decaying solution{

ψ(x) = φεeη(ε)x , η(ε) = O(1)ε,
1
ξ1 Lεφ = ηφ.

Uniformly bounded operator for subsonic condensation,
ε > 0

B],ε3 f0 ≡
(Eε3, ξ

1f0)

(Eε3, ξ
1`ε3)

`ε3, `ε3 ≡
φε − Eε3

ε
,

S],εx f0 ≡
∫ ∞

0
Gε(x , τ)[ξ1(1− B̃ε1 − B̃ε2 − B],ε3 )f0]dτ, x > 0,

S],εx = O(1)e−αx , for some α > 0 independent of ε.
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Step I. Subsonic condensation
Uniformly bounded operator for subsonic condensation, ε < 0U],ε

x f0 ≡ −
∫ ∞

0
Gε(x , τ)[ξ1(1− B],ε3 )f0]dτ, x < 0,

U],ε
x = O(1)e−α|x |, for some α > 0 independent of ε.

Uniformly bounded operator for subsonic condensation, ε > 0S],εx f0 ≡
∫ ∞

0
Gε(x , τ)[ξ1(1− B̃ε1 − B̃ε2 − B],ε3 )f0]dτ, x > 0,

S],εx = O(1)e−αx , for some α > 0 independent of ε.
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Step II. Approximate Knudsen operator.

To construct Knudsen operator S[,−εx for supersonic
condensation, −ε < 0.
Conjugate operator

S̄],εx h ≡

√
Mε

M−ε
S],εx

√M−ε
Mε

h

 , x > 0,

as an accurate approximation for the Knudsen operator.
This allows for an iteration scheme for the construction of
the exact Knudsen operator.
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Step III. Exact Knudsen operator.

Lemma

Knudsen operator S[,−εx , −ε < 0 :

There exist unique bounded operators S[,−εx , x > 0, and Λ−ε on
Range(S],−ε0+ ) satisfying, for any b ∈ Range(S],−ε0+ ),

b = S[,−ε0+ b + Λ−ε(b)φ−ε, Λ−ε(b) ∈ R,
‖S[,−εx b‖L∞ξ,3 ≤ O(1)‖b‖L∞ξ,3e−αx , x > 0, α independent of ε,

‖S[,−ε0+ b− S̄],ε0+b‖L∞ξ,3 ≤ O(1)| log ε|ε‖b‖L∞ξ,3 ,
(ξ1∂x − L−ε)S[,−εx b = 0, x > 0.

Proof.

Iterations from the conjugate operator S̄],εx .
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Discontinuity of linear operators



S̊0+b ≡ lim
ε→0+

S],ε0+b, S̊xb ≡ lim
ε→0+

S],εx b, x > 0; Stable flow,

Ů0−b ≡ lim
ε→0−

U],ε
0−b, Ůxb ≡ lim

ε→0−
U],ε

x b, x < 0; Unstable flow,

˚̀3 ≡ lim
ε→0

`ε3 : Degenerated eigenvector,

C̊0b =
2∑

j=1

B̃0
j b + B0

3b +
(ξ1E0

3,P
0
1b)

(ξ1E0
3,

˚̀3)
˚̀3 − B0

3(S̊0+ + Ů0−)P0
1b, Center component.



lim
ε→0−

Range(S],ε0+) = Range(S̊0+)⊕ span(E0
3),

lim
ε→0+

Range(S],ε0+) = Range(S̊0+),

lim
ε→0+

Range(U],ε
0−) = Range(Ů0−)⊕ span(E0

3),

lim
ε→0−

Range(U],ε
0−) = Range(Ů0−).
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Nonlinear invariant manifolds Mε
u, Mε

+, (ε < 0); Mε
s, Mε

−, (ε > 0):
the nonlinear unstable manifold, the center-stable manifold,
(supersonic); the nonlinear stable manifold, the nonlinear
center-unstable, (subsonic) defined as graphs

Fεu : Range(U],ε
0−) 7−→ Range

 2∑
j=1

B̃εj + B],ε3 + S],ε0+

 , ε < 0

Fεs : Range(S],ε0+) 7−→ Range

U],ε
0− +

2∑
j=1

B̃εj + B],ε3

 , ε > 0,

Fε− : Range

U],ε
0− +

2∑
j=1

B̃εj + B],ε3

 7−→ Range
(
S],ε0+

)
, ε > 0,

Fε+ : Range

 2∑
j=1

B̃εj + B],ε3 + S],ε0+

 7−→ Range
(
U],ε

0−

)
, ε < 0.
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Center manifold=intersection of center-stable with
center-unstable manifolds. With local Maxwellian coordinates,
the flows on center manifold are governed by Burgers type
equations.
Bifurcation manifold = nonlinear manifold based on subsonic
condensation stable operator S],εx , x > 0, ε > 0,
Sone manifold = nonlinear manifold based on supersonic
Knudsen operator S[,εx , x > 0, ε < 0.
Two-scale flows: Fast, Knudsen type flows on Bifurcation and
Sone manifolds; slow fluid-like flows on center manifold; two
scale flows in general.
Monotonicity of Boltzmann shock profiles due to Burgers type
dynamics on the center manifold.

Tai-Ping Liu Sone Manifold for Stationary Boltzmann Equation



Sone Manifold

q
+

�
M
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Bifurcation phenomena.
The flux is conserved for steady flows

(Φi , ξ
1f )x = (Φ,

1
κ

Q(f , f )) = 0, Phii , i = 1,2,3, collision invariant.

The invariant manifolds depend smoothly on the flux. For the
Euler equations,

~Ut + ~F (~U) = 0

a perturbation in the characteristic direction
~U2 = ~U1 + ε~ri(~U1) + O(1)ε2,

with the resonance case λ = O(1)ε, the flux changes little:
~F (~U2)− ~F (~U1) = ελi(~U1) + O(1)ε2 = O(1)ε2.

Thus a small change O(1)ε2 of the flux can induce a relatively
large change ε of the states. This implies the large changes of
Sone and Bifurcation manifolds in the transonic condensation
case, for instance. And the bifurcation phenomena occur.
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Sone States

Bifurcation Manifold 
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