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Sone Manifold

1-D Stationary Boltzmann equation Boltzmann equation:

1
51 Bxf = EQ(f, f)

Goal:

@ To construct the invariant manifolds using the Greens
function approach.

@ To study the coupling of Knudsen-type boundary layers
and the fluid-like interior waves.

@ Key: Construction of Sone Manifold.

In collaboration with Shih-Hsien Yu.
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Boltzmann equation:

Lo 9.

O f =
Orf +& - Oxf = ¢

Transport: O + & - Oxf
CoIIision operator:

= Jps Js2 [f(¢' — f(&)f(€)1B(1€ — &.l,0)dQdE,..
{5’ —¢-[(€-¢)-QQ,
+[(€-¢€,)- Q.

The function B(|¢ — &, |, 0) encodes the basic physical property
of the inter-molecular potential. We will consider the hard
sphere models B = |(£ — &,) - Q| = |€ — &, |cosb.
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Conservation laws for the macroscopic variables:

1 1
/ ( ¢ )[atfu-axf]ds ( ¢ )o(f,f)dgo.
RS \ 11¢|2 R3 \ 1¢]2

el el

Oip + Ox - (pv) = 0, mass,
ot(pv) + Ox - (pv x v + P) =0, momentum,
Ot(pE) + 0x - (pVE + Pv + q) = 0, energy.
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H-Theorem, Irreversibility H = [ flog fd¢, H= Jgs &flog fd¢:

L ff.
. = = <
OH +0x-H = o /R s log 7 [f'f! — ff,]BdQdg, d€ < 0,

= 0 if and only if
p(x, t) 7|e—v<);r>|2 B ,
GrRox )P " = Mg Maxwellian.

f(x,t,&) =

on 5-dimensional thermo-equilibrium manifold, Q(f, f) = 0:
{fl f=Mvg, p>0,0>0, veR}

The H-Theorem says that there is a tendency for the solution f
of the Boltzmann equation to approach the equilibrium
manifold.
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Boltzmann equation

1
Ouf + & - Oxf = 2Q(1, ).

At thermo-equilibrium, f = M, the conservation laws become
the Euler equations in gas dynamics:

8{[) T ax . (pV) = O7
O(pv) + 0x - (pv x v+ pl) =
O1(pE) + 0x - (pVE + pv) = 0.

Fluid dynamics, thermodynamics phenomena occur around the
thermo-equilibrium manifold.
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To study the flows near the equilibrium manifold, linearize the
Boltzmann equation around a fixed Maxwellian f = M + vMg

g: + &€ - 0xg = Lg, linearized Boltzmann equation,
2Q(v/Mg,M)

The linearized collision operatorLg = has kernel the
tangent plane to the equilibrium manifold therough M:

Lg = 0 for g € span{V'M, &V M, |¢|>VM}.
Macro projection Py: the projection onto the kernel of L.
Micro projection: P1 = | — Py.

Macro-Micro decomposition g = Pog + P1g = g0 + 91-
H-Theorem Lgy < —rg¢ for some constant v > 0.
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Linearized Euler equations, 1-dimensional,

(90)t + Po(€'go)x = 0.
Euler characteristics:

Po¢'PoE; = \E;, \; Euler speeds, E; Euler directions,
{M, 2, N3} ={-c+u,u,c+u}, c= \/%, (sound speed at rest),

Navier-Stokes equations:

(90)t + (Po&do)x = [—KL™"(P1€g0)xlx,

Navier-Stokes viscosity and heat conductivity :

A= A(0) = —k (P1€'E; L7 (Pi¢'E))) , j=1,2,3.
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1-dimensional Green’s function

(767' 7 5*8}/ 7 L)G(X 7 y’ t— Taé?ﬁ*) = 07
G(x = y,0,6,&) = 0" (y — x)8%(& — €).
The Green’s function contains the particle-like wave and the

fluid-like waves in the Euler wave direction Ej with
Navier-Stokes dissipations Ay = —(P1&'Ex, L=TP1£Eg):

Theorem

G(x, 1,6 &) = e/ E5(x — 1153 (¢ - &)

(x=Ag1)?
e )

kz_; VAAm(t+ 1)

3

+ Ex(€)EK(E) +

<
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Invariant manifods, the linear theory
¢'o 1

L% ={h: Slgp|h|(1 +1¢)P¥ <} =SaCaU

is a stable-center-unstable invariant manifolds decomposition
for the linear stationary Boltzmann equation ¢'9xg = £Lg if

@ for any given h € S, there exists a solution g to the
equation for x > 0 with g|x—o = h, g(x) — 0 as x — oo,

@ for any given h € U, there exists a solution g to the
equation for x < 0 with g|x—o = h, g(x) — 0 as x — —o0,

@ any given h € C is a constant solution of the equation.
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We will start with the time-dependent equation

]

g +€'0xg = 7

Lg, x>0,

and use the time-asymptotic analysis to construct the
stationary solution:

£'0,g = %Lg, x > 0.

To obtain time-asymptotic convergence, we need:
@ Time-asymptotic compactness.
@ Suitable boundary flux at x = 0, £o0.

@ These require pointwise control of the time dependent
solutions, thereby the Green’s function approach.
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Euler projections B;, j = 1,2, 3,

Bk = (Ej,k)Ej, By = ) By, upwind Euler projections,
A >0

Euler Flux Projections B;, j = 1,2, 3,

E,¢'9)E; - =
(”ig)/, B = ) By, upwind Euler flux projections.
J A >0
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Theorem
IfAj, j=1,2,3, are non-zero, then for any h € L¢3, g(x) = Sxh

and g(x) = Uxh given below are solution of £10xg = Lg :
Stable steady linear Boltzmann flows

{th = [ G(x,8)¢'(1 — By )hds,

Sxh = 0(1)e~ ™, x —

Unstable steady linear Boltzmann flows

Uxh = — [$°G(x, )" (1 — B_)hds,
Uxh = O(1)e=2M, x — —oc

Linear Stable-Center-Unstable Decomposition

[35=8®Ca U, S=So,(L5%), C=Po(L), U=Up_(L)
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Lemma (Stable manifold)
Foranyb € Loo , 9 = Sb solves the linear stationary Boltzmann
equation forx >0andg— 0 as x — .

The source has no upwind Euler
componentB. ¢'(b — B, b) = 0, and so the convolution with the
Green’s function satisfies:

t ~
99z, = [ fm. [ G(x,t=le' (o - Brb)lar
3 — 00 0 LEOS
Ix=xj(t=m)2 )\(l )2 Ix=xe=m)P /\(t T)\Z
< IIm
t—oo 0 )\jo(t—7'+1 )\<0,/ T+1

1€, ar = (55 + o7 bz,
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Lemma (Gauss Lemma)

Foranyb € L¢3,

_ [ )¢ bldr — . — 7)¢bldr.
b_/o G(0+, 7)[¢"b]d /O G(0—, 7)[e'bld

The only distribution in G is h°® = §(x — £'1)53(¢ — &,)e V&)t
/Oo G(0+,7)[€"b]dr — /oo G(0-, 7)[¢"bldr
0 0

_ /Oo hO(0+, T)[§1b+]d7—/°° hO(0—, 7)¢'b_]dr = bs+b_ = b,
0 0

where b :
b (¢) =b(¢) for ¢’ >0, b_(£) = b(¢) for ¢! < 0,
0 else, 7 ) oelse.
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Lemma (Invariant manifolds decomposition)
Foranyb € L¢3,

b = Pob + Sob + Ug_b,
So.B_ =Uo_B, =0,
So+Uo_b = Uo_So+b = O

b= / ~ G0+, )¢ "b]dr — / ~ G(0—, )[¢"b]dr [Gauss]
/ GO+, 7)[e' (1 — B.) b]d7+/ G(0+, 7)[¢'B., bldr

/ G(0—, )¢ (1-B_ )b]dr— / G(0—, 7)[¢"B_b]dr [definition]
= So+b+ B+b + Ug_b + B.b= Pob + So+b + Up_b.
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Lemma (Exponential decay)

For some positive constant oo = O(1)k min{|\;|, j = 1,2,3, } the
Stationary solution g = Sb satisfies

l9()lliz, = O™ [lbl|zx, , X — oo.

Similarly for g = Ub satisfies

_ —alx| P
19() e, = O(1)e™* Bl e, , X — —00.

The estimate from Green’s function pointwise estimates yield
algebraic rate. The exponential rate is proved by the weighted
energy method. O
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The boundary layers thus obtained are of the
Knudsen-type.

The linear theory can be generalized to the nonlinear
theory using standard techniques in the dynamical system
because of the spectral gap « > 0. This is a weakly
nonlinear theory, with the strength of the nonlinearity of the
order of a.

The spectral gap vanishes,

a= O(1)kmin{|)\;], j=1,2,3,} — 0, as some \; — 0.
Physically, when one of the Euler characteristics is near
zero, there is the coupling of the boundary Knudsen-type
wave with one of the fluid-like waves. A strong nonlinear
theory is needed here.

the explicit construction of the Sone Manifold is the
essential step.
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Sone Manifold

Bifurcation Manifold

A\
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Construction of Sone Manifold

Step |. Subsonic condensation
@ The Sone Manifold consists of Knudsen-type boundary
waves for supersonic condensation.
@ Consider small \3 = ¢, transonic condensation.
@ Slowly decaying solution

{w(x) = 9", n(e) = O(1)e,

arleo =no.
@ Uniformly bounded operator for subsonic condensation,
e>0
. Ee,§1f . . ¢e — E¢
Bty = (Eort f0) pe oy :

(E5.€75) ™ ¢

Skt = / G (x, 1)[E" (1 — B — B — BEO)foldr, x > 0,
0

S?f = O(1)e™*, for some « > 0 independent of e.
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Step |. Subsonic condensation
Uniformly bounded operator for subsonic condensation, ¢ < 0

[e.e]
Uk, = / G(x, 7)1 — Bg’e)fo]dr, x <0,
Uk = 0(1)e~*™, for some a > 0 independent of e.
Uniformly bounded operator for subsonic condensation, ¢ > 0

{SﬁffO = / Ge(x,7)[e'(1 —BS — Bs — Bg’e)fo]dT, x>0,
0

Sk = O(1)e~*, for some « > 0 independent of e.

Tai-Ping Liu Sone Manifold for Stationary Boltzmann Equation



Construction of Sone Manifold

Step II. Approximate Knudsen operator.

@ To construct Knudsen operator SZ’_E for supersonic
condensation, —e < 0.

@ Conjugate operator

Ql,€ ME € Mfe
Sheh = M%Sgg M h) X >0,

as an accurate approximation for the Knudsen operator.

@ This allows for an iteration scheme for the construction of
the exact Knudsen operator.
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Step lll. Exact Knudsen operator.

Lemma

Knudsen operator Sy~ ¢, —e < 0:
There exist unique bounded operators S*,’fe, X >0,and A€ on
Range(Sg’f) satisfying, for any b e Range(ng),

b =Sy, b+ A~(b)¢¢, A=(b) € R,

HSI”_ebIILw < ()(1)\||D\|Loo e, x>0, aindependent of e,
ISy — S“bum < O(1)|log | bz,

(€10, —L-98;~D =0, x>0,

lterations from the conjugate operator She.

<
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Discontinuity of linear operators

So4b = Jim. SE<b, §xb = Jim S5 S¥‘b, x > 0; Stable flow,

Uo_b = Elﬂlmi Uﬁ b, Uxb = Jim U U%b, x < 0; Unstable flow,

fy = lim

Cob = 22: B’b + B3b + W /3 — B3(So; 4+ Up_)PIb, Centel
\ = ,£3)
lim Range(Sg ) = Range(So..) ® span(E3)

Irg+ Range(s§’) = Range(So.),
Eir& Range(U5* ) = Range(Uo_) @ span(E3),
| lim Range(U* ) = Range(Up_)
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Nonlinear invariant manifolds Mg, M, (e < 0); Mg, M<, (e > 0):
the nonlinear unstable manifold, the center-stable manifold,
(supersonic); the nonlinear stable manifold, the nonlinear
center-unstable, (subsonic) defined as graphs

2
F : Range(U%°) — Range (Z +BE +8E |, e<0
Fs - Range(Sg’i) —— Range (Ug’e + Z Bj- + Bg‘ , €>0,
j=1
2 ~
F< : Range [ U§" + > B +B5* | — Range (s§5 ), ¢ >0,
j=1
2 ~
FS : Range Z Bj + BL + Sgi —— Range <U§)’j> ,e<0.
j=1
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Center manifold=intersection of center-stable with
center-unstable manifolds. With local Maxwellian coordinates,
the flows on center manifold are governed by

Bifurcation manifold = nonlinear manifold based on subsonic
condensation stable operator Sﬁge, x>0,€e>0,
= nonlinear manifold based on supersonic

Knudsen operator S¢, x > 0, € < 0.
Two-scale flows: Fast, Knudsen type flows on Bifurcation and
Sone manifolds; slow fluid-like flows on center manifold; two
scale flows in general.

due to Burgers type
dynamics on the center manifold.
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Sone Manifold

Bifurcation Manifold

A\
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Bifurcation phenomena.
The flux is conserved for steady flows

(D, M)y = (O, 1Q(f, f)) =0, Phi;, i = 1,2, 3, collision invariant.
KR

The invariant manifolds depend smoothly on the flux. For the
Euler equations, L
U+ F(U)=0
a perturbation in the characteristic direction
Us = Uy + e (Uy) + O(1)€?,
with the case A = O(1)g, the flux changes little:
F(Uz) = F(Ur) = eXi(Uy) + O(1)€® = O(1)e?.

Thus a small change O(1)e? of the flux can induce a relatively
large change e of the states. This implies the large changes of
Sone and Bifurcation manifolds in the transonic condensation
case, for instance. And the bifurcation phenomena occur.
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