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Semilagrangian RK and BDF schemes

BGK model

The BGK model (Bhatnagar-Gross-Krook ’54) approximates Boltzmann equation
for the evolution of a rarefied gas.

The main variable is the distribution function f of the particles, as in the
Boltzmann equation. The evolution of f is given by:

∂f

∂t
+ v · ∇xf =

1

ε
(M [f ]− f) (1)

with initial condition f(x, v, 0) = f0(x, v).
Here ε represents the non dimensional collision time. Hydrodynamic regime
→ ε� 1
Rarefied regime → ε ∼ O(1)

Here we present results on numerical methods for the BGK equation based on a
Semi-Lagrangian formulation using BDF
(Stracquadanio, Russo, Groppi, Comm. Math. Science, accepted).
The method is compared with a RK-based approach (Russo, Santagati, 2008).

Giovanni Russo (DMI) Semilagrangian methods for the BGK model 7 / 82



Semilagrangian RK and BDF schemes

BGK model

The BGK model (Bhatnagar-Gross-Krook ’54) approximates Boltzmann equation
for the evolution of a rarefied gas.

The main variable is the distribution function f of the particles, as in the
Boltzmann equation. The evolution of f is given by:

∂f

∂t
+ v · ∇xf =

1

ε
(M [f ]− f) (1)

with initial condition f(x, v, 0) = f0(x, v).
Here ε represents the non dimensional collision time. Hydrodynamic regime
→ ε� 1
Rarefied regime → ε ∼ O(1)

Here we present results on numerical methods for the BGK equation based on a
Semi-Lagrangian formulation using BDF
(Stracquadanio, Russo, Groppi, Comm. Math. Science, accepted).
The method is compared with a RK-based approach (Russo, Santagati, 2008).

Giovanni Russo (DMI) Semilagrangian methods for the BGK model 7 / 82



Semilagrangian RK and BDF schemes

Semi-Lagrangian formulation

Simplified model: 1D in space and velocity:

∂f

∂t
+ v

∂f

∂x
=

1

ε
(M [f ]− f). (2)

with

M [f ] =
ρ

(2πRT )1/2
exp

(
− (v − u)2

2RT

)

t ≥ 0, x, v ∈ R.
Semi-Lagrangian: follow the evolution along the characteristics.

df(x, v, t)

dt
=

1

ε

(
M [f ](x, v, t)− f(x, v, t)

)
,

dx

dt
= v, x(0) = x̃, f(0, t, v) = f0(x̃, v) t ≥ 0, x, v ∈ R.

(3)

⇒ x(t) = x̃+ vt, t ≥ 0, x, v ∈ R, (characteristic straight lines).

Giovanni Russo (DMI) Semilagrangian methods for the BGK model 8 / 82



Semilagrangian RK and BDF schemes

Implicit first order Semi-Lagrangian scheme

Let fnij ≈ f(xi, vj , t
n) be approximate solution.

Possible stiffness (small ε) ⇒ implicit formulation.

fn+1
ij = f̃nij +

∆t

ε
(Mn+1

ij − fn+1
ij ), (4)

Here f̃nij = f(tn, x̃i = xi − vj∆t, vj) can be calculated by (linear) interpolation
from {fn.j}.
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Semilagrangian RK and BDF schemes

Solution of the implicit step

Equation (4) is non linear.
Indeed M [f ]n+1

i,j depends on fn+1
ij through its moments.

Let φ(v) be the vector φ(v) = (1, v, v2)T . Compute the moments of fn+1
ij :

〈fn+1
ij φ〉 = 〈f̃nijφ〉+

∆t

ε
〈(Mn+1

ij − fn+1
ij )φ〉.

From the conservation, we have

〈(Mn+1
ij − fn+1

ij )φ〉 = 0 ⇒ 〈fn+1
ij φ〉 = 〈f̃nijφ〉

Hence we immediately find the macroscopic variables ρn+1
i , un+1

i and Tn+1
i

corresponding to fn+1
ij using f̃nij and with these values the approximated

Maxwellian is updated.
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Semilagrangian RK and BDF schemes

Higher order: Runge-Kutta

Classical RK schemes can be adopted.
Stage values are computed along the characteristics.
First they are computed at grid position xi (empty cycles) and then the value of f
(or the RK flux) is interpolated on the characteristics (empty squares)

High order in space is obtained by WENO reconstruction.

Giovanni Russo (DMI) Semilagrangian methods for the BGK model 11 / 82



Semilagrangian RK and BDF schemes

Higher order: Runge-Kutta

Classical RK schemes can be adopted.
Stage values are computed along the characteristics.
First they are computed at grid position xi (empty cycles) and then the value of f
(or the RK flux) is interpolated on the characteristics (empty squares)

High order in space is obtained by WENO reconstruction.
Giovanni Russo (DMI) Semilagrangian methods for the BGK model 11 / 82



Semilagrangian RK and BDF schemes

High order BDF schemes

Runge-Kutta methods may be expensive.
The BDF (Backward Difference Formula) methods allow same order of accuracy
at lower cost.

We will show some numerical results concerning the BDF methods with 2 (BDF2)
and 3 (BDF3) steps. Applying these methods to the Lagrangian formulation of
the BGK model we obtain the following schemes:

fn+1
ij =

4

3

(1)

fnij −
1

3

(2)

fn−1
ij +

∆t

ε
(Mn+1

ij − fn+1
ij )

fn+1
ij =

11

18

(1)

fnij −
9

11

(2)

fn−1
ij +

2

11

(3)

fn−2
ij +

∆t

ε
(Mn+1

ij − fn+1
ij )

where
(s)

fnij= fn(xi − svj∆t, vj), s = 1, 2, 3, obtained by interpolation.

High order in space is obtained by WENO reconstruction.
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Semilagrangian RK and BDF schemes

Extension to BGK equation 3D in velocity (Chu reduction)

The technique used in 1D in space, 3D velocity, cylindrical axial symmetry.

Given f = f(x, (vx, vy, vz), t) we introduce

g1 = g1(x, vx, t) =

∫
f dvydvz, g2 = g2(x, vx, t) =

∫
(v2
y + v2

z)f dvydvz.

Macroscopic moments ρ, ρu and E can be expressed in terms of g1 and g2:

ρ =

∫
g1 dvx, ρu =

∫
g1vx dvx,

E =
1

2

∫
v2
xg1 dvx +

1

2

∫
g2 dvx. (5)
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Semilagrangian RK and BDF schemes

Chu reduction

Integrating BGK eq. in dvydvz, multiplying it by (v2y + v2z) and integrating in dvydvz, we
obtain the following system in g1 and g2, 1D in velocity (vx = v):

∂g1
∂t

+ v
∂g1
∂x

=
1

ε
(M1 − g1)

∂g2
∂t

+ v
∂g2
∂x

=
1

ε
(M2 − g2)

(6)

where M2 = M12RT , with

M1 = M [g1, g2] =
ρ

(2πRT )1/2
exp

(
− (v − u)2

2RT

)
Once system (6) is solved, macroscopic moments of f(x, v, t) can be obtained through
formulas (5).

Implicit step can me explicitly solved in a way similar to the 1D case.
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Numerical tests

Numerical test for the problem 1+1D

We have considered two numerical test:
1 Smooth initial data

(f0 =M [v, ρ = 1, u = 0.1exp(−(10x− 1)2)− 2exp(−(10x+ 3)2), T = 1])

time interval [0,0.04];
space interval [-1,1];
velocity interval [-10,10];
Nv = 40;
∆t = CFL∆x/|vmax|;

2 Riemann problem (jump in x = 0.5):

(ρL, uL, TL) = (2.25, 0, 1.125), (ρR, uR, TR) = (3/7, 0, 1/6)
time interval [0,0.16];
space interval [0,1];
velocity interval [-10,10];
Nx = 100;
Nv = 60;
∆t = CFL∆x/|vmax|;

For each test the cases ε = 10−2 and ε = 10−6 have been studied.
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Numerical tests

RK2 and BDF2 accuracy 1+1D in rarefied regime
(ε = 10−2)
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Numerical tests

RK2 and BDF2 accuracy 1+1D in hydrodynamic regime
(ε = 10−6)

Giovanni Russo (DMI) Semilagrangian methods for the BGK model 17 / 82



Numerical tests

RK3 and BDF3 accuracy 1+1D in rarefied regime
(ε = 10−2)
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Numerical tests

RK3 and BDF3 accuracy 1+1D in hydrodynamic regime
(ε = 10−6)
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Numerical tests

BDF3-weno3-5, CFL-Error for the problem 1D+1D
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Numerical tests

Comparison with the solution of gas dynamics: density
given by BDF3 and RK3 for 1+3D
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Numerical tests

Comparison with the solution of gas dynamics: velocity
given by BDF3 and RK3 for 1+3D
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Numerical tests

Comparison with the solution of gas dynamics:
temperature given by BDF3 and RK3 for 1+3D
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Boundary conditions

Reflective BC

The foot of the characteristic is reflected back into the domain. Then
interpolation can be used.
In one space dimension one can simply add ghost points and assign them a
symmetric distribution function.

vj > 0

−vj

xb = 0

x1 x2−x1−x2

tn

tn+1 fn+1
2,j

ghost points︷ ︸︸ ︷

Figure: Discretization of specular reflective conditions.
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Boundary conditions

Diffusive Boundary Conditions

Let us assume that the boundary is located on the left, at position x = 0 with
temperature Tb.

 

t
n+1

t
n

x=0 i

f
ij

n+1

}}  θ ij

We assume that we know the solution at time tn:{
fnij , i = 1, ..., Nx, j = 1, ..., Nv

}
and the density at x = 0, ρnb .

Three techniques are adopted:

Iterative procedure (IP)

Extrapolation procedure (EP)

Inverse Lax-Wendroff technique (ILW)
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Boundary conditions

Diffusive Boundary Conditions: Iterative procedure

The density ρn+1
bj is computed by imposing zero mass flux at t = tn+1, x = 0,

that is
∑
j vjf

n+1
bj = 0, where

fn+1
bj =





ρn+1
b

exp(−v2
j /2Tb)

(2πTb)1/2
for vj > 0,

fnξjj +
∆t

ε
(Mn+1

bj − fn+1
bj ) for vj < 0

ξj = −vj∆t. The Maxwellian Mn+1
bj cannot be computed in the usual way. We

shall therefore use an iterative procedure. Let

f
(0)
bj =





ρ
(0)
b Ebj for vj > 0,

fnξjj for vj < 0

with Ebj = exp(−v2
j /2Tb)/(2πTb)

1/2. Skip to tests
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Boundary conditions

Diffusive Boundary Conditions

Imposing
∑
j vjf

(0)
bj = 0 one determins ρ(0). Once ρ(0) is known, one computes

the moments m
(0)
β =

∑
j v

β
j f

(0)
bj , β = 0, 1, 2. From the moments one computes

the Maxwellian M
(0)
bj . Then one can iterate untill convergence:

f
(k)
bj =





ρ
(k)
b Ebj for vj > 0,

fnξjj + ∆t
ε (M

(k−1)
bj − f (k−1)

bj ) for vj < 0

Finally we set fn+1
bj = limk→∞ f

(k)
bj and ρn+1

b = limk→∞ ρ
(k)
b
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Boundary conditions

Diffusive Boundary Conditions

Once the density at the new time has been found, one can then compute the
function at other grid points, as follows. Consider, for example, point xi in the
previous figure. Then one has:

fn+1
ij =





fnξjj + ∆t
ε (Mn+1

ij − fn+1
ij ) if ξj = xi − vj∆t > 0,

(
θijρ

n+1
b + (1− θij)ρnb

)
Ebj if ξj < 0.

The geometrical factor θij = 1− xi/(vj∆t) can be computed for each velocity.
The Maxwellian Mn+1

ij may be computed by using an iterative procedure similar

to the one used for the computation of ρn+1
b .
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Boundary conditions

Extrapolation procedure (EP)

xb=0 x

v

vmin

vmax

x̄b

inner nodes

inner nodesfEij

f Iij

fθij
The discretized distribution function
is defined in
[xb,+∞]× [vmin, vmax].

The distances |xb − x̄b| is vmax∆t.

Inner region (light gray): characteristics fan do not touch the boundary.
Outflow region (dark gray): extrapolate the distribution function from the inner region.
Inflow region: (white region, vj · n(x) ≥ 0) we use information coming from the wall.
The new distribution function at time tn+1 is therefore

fn+1
bj =


fE,n+1
bj if vj · n(x) < 0

ρn+1
b Ebj if vj · n(x) ≥ 0.

(7)
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Boundary conditions

Inverse Lax-Wendroff procedure

Normally used to extend the distribution function at the ghost points for the
inflow boundary. At the boundary xb = 0, a first order Taylor expansion gives

fj(x) = fbj + (x− xb)
∂f

∂x
|x=xb

+O(∆x2)

Hence, a first order approximation of f at ghost points xg is

fgj = fbj + (xg − xb)
∂f

∂x
|x=xb

.

By reformulating the BGK equation, we have

∂f

∂x
|x=xb

=
1

v

(
− ∂f

∂t
+

1

ε
(M [f ]− f)

)
|x=xb

Now instead of approximating the first spatial derivative, one computes the time
derivative and the collision operator in x = xb.
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Boundary conditions

Diffusive boundary condition test

As initial data we have chosen the following:

x ∈ [−0.5, 0.5];

v ∈ [−10, 10];

ρ0(x) = 1;

u0(x) = 0;

T0(x) = 1, TL = 1, TR = 1.44;
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Boundary conditions

Temperature, Kn = 10−2.
Comparison between IP and ILW. t = 0.02

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
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tu
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Inverse L−W
Consistent procedure
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Boundary conditions

Temperature, Kn = 10−2.
Comparison between IP and ILW.t = 0.04
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Boundary conditions

Temperature, Kn = 10−2.
Comparison between IP and ILW. t = 0.06
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Boundary conditions

Temperature, Kn = 10−2.
Comparison between IP and ILW. t = 0.2
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Boundary conditions

Temperature, Kn = 10−2.
Comparison between IP and ILW. t = 0.4
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Boundary conditions

Temperature, Kn = 10−2.
Comparison between IP and ILW. t = 0.5
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Boundary conditions

Temperature, Kn = 10−2.
Comparison between IP and ILW. t = 0.6
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Boundary conditions

Temperature, Kn = 10−2.
Comparison between IP and ILW. t = 0.7
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Boundary conditions

Temperature, Kn = 10−2.
Comparison between IP and ILW. t = 0.8
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Boundary conditions

Temperature, Kn = 10−2.
Comparison between IP and ILW. t = 1
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Boundary conditions

Temperature, Kn = 10−6. IP.
t = 0.02
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Boundary conditions

Temperature, Kn = 10−6. IP.
t = 0.04

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

 t
fin

=0.04, CFL=2, N
x
=100, N

v
=42, Kn=10−6

x

T
em

pe
ra

tu
re

 

 
Consistent procedure

Giovanni Russo (DMI) Semilagrangian methods for the BGK model 43 / 82



Boundary conditions

Temperature, Kn = 10−6. IP.
t = 0.06
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Boundary conditions

Temperature, Kn = 10−6. IP.
t = 0.2
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Boundary conditions

Temperature, Kn = 10−6. IP.
t = 0.4
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Boundary conditions

Temperature, Kn = 10−6. IP.
t = 0.5
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Boundary conditions

Temperature, Kn = 10−6. IP.
t = 0.6
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Boundary conditions

Temperature, Kn = 10−6. IP.
t = 0.7
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Boundary conditions

Temperature, Kn = 10−6. IP.
t = 0.8
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Boundary conditions

Temperature, Kn = 10−6. IP.
t = 1
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Boundary conditions

Comparison between IP and EP

In general EP is more efficient, especially for small Knudsen number, when IP
requires several iterations.
In some cases EP turns out to be even more accurate. We show just one test.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3
ε=10−1, t

f
=10

x

E
rr

or
 d

en
si

ty

 

 

Error EP
Error IP

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

2.5
x 10

−3
ε=10−1, t

f
=10

x

E
rr

or
 te

m
pe

ra
tu

re

 

 

Error EP
Error IP

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

ε=10−2, t
f
=20

x

E
rr

or
 d

en
si

ty

 

 

Error EP
Error IP

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

6

7
x 10

−3
ε=10−2, t

f
=20

x

E
rr

or
 te

m
pe

ra
tu

re

 

 

Error EP
Error IP

Error in density and temperature profiles generated by a temperature gradient
obtained from IP and EP methods (with Nx = 50), at tf = 10 if ε = 10−1, and
at tf = 20 if ε = 10−2,CFL=1, with respect to a reference solution obtained by
ILW technique (with Nx = 200).
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Mixtures

Application to BGK models for mixture

Mixture composed of r species.
fs, s = 1, ..., r: distribution function of each component.
A consistent BGK model for gas mixtures is given by the following system of
kinetic equations (Andries, Aoki, Perthame, 2002):

∂fs
∂t

+ v · ∇xfs =
1

εs

(
Ms − fs

)
, s = 1, ..., r (8)

where Ms is a local auxiliary Maxwellian, depending on auxiliary fields ñs, ũs e T̃s
which can be made explicit in terms of the actual macroscopic fields ns, us and
Ts of the distribution functions fs.

Ms = ñs

(
ms

2πKT̃s

)3/2

exp

(
− ms

2KT̃s
(v − ũs)2

)
, s = 1, ..., r.
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Mixtures

Numerical Test for gas mixture

We considered a mixture of four gases with the following values of the molecular
masses:

m1 = 58.5, m2 = 18, m3 = 40, m4 = 36.5.

As initial data we have chosen Maxwellians reproducing the following moments
(Riemann problem):

(ρ0, u0, p0) =

{
(1, 0, 5/3), x < 0.5,

(1/8, 0, 1/6), x > 0.5,

(ρ01, ρ02, ρ03, ρ04) =

{
(1/10, 2/10, 3/10, 4/10), x < 0.5,

(1/80, 2/80, 3/80, 4/80), x > 0.5,
,

u0i = 0, i = 1, ..., 4.
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Mixtures

Density, Kn=0.05
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Mixtures

Velocity, Kn = 0.05
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Mixtures

Temperature, Kn = 0.05
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Mixtures

Density, Kn = 10−4
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Mixtures

Velocity, Kn = 10−4
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Mixtures

Temperature, Kn = 10−4
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Schemes with no interpolation

SL schemes without interpolation

Computational cost of the schemes is mainly due to the interpolation;

To reduce the cost: look for schemes that avoid interpolation;

First order: choosing ∆v∆t = ∆x the characteristics connect grid points in
space (see figure).

xi−2 xi−1 xi
tn

tn+1

v1 = ∆v

v2 = 2∆v

v3 = 3∆v

xi−3
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Schemes with no interpolation

SL schemes without interpolation

Accuracy order can be increased using BDF or RK time integration;

With the choice ∆v∆t = ∆x, which implies CFL = Nv, BDF schemes can
be easily adapted in this setting;

RK schemes: ∆v∆t = s∆x, s∈ N and each component of c must be
multiple of 1/s.

The restriction on the c coefficients, and stability requirements rule out
second order RK schemes with s = 2 and third order schemes with s = 3.

A second order s = 3 and third order s = 4 L-stable schemes:

T2 =
1/3 1/3 0

1 3/4 1/4
3/4 1/4

A3 =

1/2 1/2 0 0
3/4 1/2 1/4 0

1 5/3 -4/3 2/3
5/3 -4/3 2/3
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Schemes with no interpolation

Remarks:

The bad:

DIRK schemes avoiding interpolation require CFL number fixed to sNv
therefore space may be over-resolved.

For non rectangular geometry interpolation is needed near the boundady
(ghost points).

The good:

Extremely efficient and simple to code in rectangular geometry, especially if
few points in velocity space are needed.

Even for complex geometry the schemes without interpolation could be used
far from the boundary.
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Schemes with no interpolation

Cost-accuracy comparison between schemes
with and without interpolation (smooth solution)
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Convergence

Convergence proofs

A convergence proof for a first order version of the semilagrangian scheme has
been obtained in collaboration with S.B.Yun and P.Santagati (G.R., P. Santagati,
S.-B. Yun, SIAM J. Numer. Anal. 2012).
BGK equation in dimensions d in space and velocity.
Initial value problem in periodic domain in space.
Discretize phase space in time, space, and velocity (by ∆t, ∆x, and ∆v).
The first order scheme can be written as

fn+1
i,j,R =

κ

κ+4t f̃
n
i,j,R +

4t
κ+4t M

n
i,j(f̃

n
R), (n = 1, ..., Nx − 1) (9)

where κ = Knudsen number, and f̃ and M̃ are suitably defined. The discrete
function is extended as piecewise constant function in the whole phase space.
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Convergence

The main result of the paper is an error estimate of the form

‖f(·, ·, Tf )− f4R (·, ·, Tf )‖L1
q
≤ C

(
∆x+ ∆v + ∆t+

∆x+ ∆v

∆t
+

1

(1 +R)q+1

)

where

‖f‖L1
q
≡
∫

Td×Rd

f(x, v, t)(1 + |v|)q dv dx

and R is a parameter denoting the truncation of the domain in velocity space.
The proof is rather technical. The starting point is to write a recurrence relation
from time t to time t+ ∆t, both for the exact solution and for the numerical
solution, and to estimate term by term, until a local estimate is obtained.
From the local estimate, by iteration, one obtains the global estimate.

Result is not optimal since it requires ∆x,∆v → 0 faster than ∆t. It also requires
a restriction on ∆t on the Knudsen number κ.

Work in progress: SL scheme for the ES-BGK skip

Giovanni Russo (DMI) Semilagrangian methods for the BGK model 66 / 82



Convergence

Work in progress: SL scheme for the ES-BGK model

We plan to work both on a computational and theoretical point of view.

∂tf + v · ∇f =
1

κ
Aν(Mν(f)− f),

f(x, v, 0) = f0(x, v),
(10)

Phase point (x, v) ∈ Td1 × Rd2 (d1 ≤ d2) at time t ∈ R+.
Collision frequency: Aν = (1− ν)−1. The ellipsoidal Gaussian Mν(f) reads:

Mν(f) =
ρ√

det(2πTν)
exp

(
−1

2
(v − U)>T −1

ν (v − U)

)
,

The temperature tensor Tν is given by a convex combination of T and Θ:

Tν = (1− ν)TId + νΘ,

where Id is the d2 × d2 identity matrix, and

ρ(x, t)Θ(x, t) =

∫

Rd2

f(x, v, t)(v − U)⊗ (v − U) dv
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Convergence

Solution of the relaxtion operator

The first order semilagrangian scheme reads:

fn+1
i,j − f̃ni,j
4t =

1

κ
Aν
{
Mj(f

n+1
i )− fn+1

i,j

}
.

Here f̃ns,j denotes the linear interpolation:

f̃ni,j =
x(i, j)− xs
4x fns+1,j +

xs+1 − x(i, j)

4x fns,j . (11)

The relaxation step can be explicitly solved, with a small error,

Θn+1
i ≈ 4t

κ+4t T̃
n
i Id +

κ

κ+4t Θ̃
n
i ,

Therefore Mj(f
n+1
i ) can be explicitly approximated, and fn+1

i,j computed:

fn+1
i,j =

κ

κ+Aν4t
f̃ni,j +

Aν4t
κ+Aν4t

Mν̃,j(f̃
n
i ).
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Convergence

Remarks

The limitation on the support in velocity is removed for simplicity of the
analysis

Similar limitation on the space step and on the time step are present. A finer
analysis is needed to in order to remove them (if possible)

Proof of convergence (with S.B.Yun) and high order extensions (with
S.B.Yun and S.Boscarino) are in progress .

We are investigating the use of methods that do not require interpolation,
which should simplify the analysis and perhaps allow to obtain sharper
results, and possibly simplify the analysis for higher order schemes in time.
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Conservative correction

Conservative correction

General technique to construct conservative schemes starting from non-conservative
schemes. Can be adopted both at finite volume or conservative finite difference level

1 compute a predictor value at the center of the cell

2 use such a predictor to perform reconstruction of the fluxes, at cell edges

3 evolve the conservative values according to the computed fluxes
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Conservative correction

Application to conservation laws

Consider a system of conservation laws

∂u

∂t
+
∂f(u)

∂x
= 0

One can choose a predictor based on
∂u

∂t
+A(u)

∂u

∂x
= 0 or even

∂v

∂t
+B(v)

∂v

∂x
= 0

where u = U(v) is an invertible mapping (v = V (u) is the inverse) and the
formulation in v is somehow simpler.
Then one can apply a conservative correction using finite volume or finite
difference discretization.

skip to stability
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Conservative correction

Finite volume approach

1 from {ūnj } compute the pointwise values of {vnj }.
2 evolve vj with a non conservative scheme (e.g. Runge-Kutta with ν stages)

v
(l)
j = v

(1)
j −∆t

l−1∑
k=1

alkB(v
(k)
j )(Dxv

(k))j , j = 1, . . . , Nx, l = 1, . . . , ν,

(Dxv
(k))j : numerical discretization of space derivative of v(x, tn + ck∆t).

3 Reconstruct (pointwise) the nonconservative variables at cell edges v
(k)±
j+1/2

4 Compute the fluxes at cell edges: f
(k)

j+ 1
2

= F (u
(k)−
j+ 1

2

, u
(k)+

j+ 1
2

) = F̃ (v
(k)−
j+ 1

2

, v
(k)+

j+ 1
2

)

5 Evolve the conservative variables

ūn+1
j = ūnj −

∆t

∆x

ν∑
l=1

blKl

Kl = f
(l)

j+ 1
2

− f (l)

j− 1
2
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ūn+1
j = ūnj −
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1 from {ūnj } compute the pointwise values of {vnj }.
2 evolve vj with a non conservative scheme (e.g. Runge-Kutta with ν stages)

v
(l)
j = v

(1)
j −∆t

l−1∑
k=1

alkB(v
(k)
j )(Dxv

(k))j , j = 1, . . . , Nx, l = 1, . . . , ν,

(Dxv
(k))j : numerical discretization of space derivative of v(x, tn + ck∆t).

3 Reconstruct (pointwise) the nonconservative variables at cell edges v
(k)±
j+1/2

4 Compute the fluxes at cell edges: f
(k)

j+ 1
2

= F (u
(k)−
j+ 1

2

, u
(k)+

j+ 1
2

) = F̃ (v
(k)−
j+ 1

2

, v
(k)+

j+ 1
2

)

5 Evolve the conservative variables
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Conservative correction

Finite difference approach

1 compute {vnj = V (uj)}.
2 evolve vj with a non conservative scheme (e.g. Runge-Kutta with ν stages)

v
(l)
j = v

(1)
j −∆t

l−1∑

k=1

alkB(v
(k)
j )(Dxv

(k))j , j = 1, . . . , Nx, l = 1, . . . , ν,

(Dxv
(k))j : numerical discretization of space derivative of v(x, tn + ck∆t).

3 Compute the splitter fluxes f− and f+ (f− + f+ = f) at cell center xj at
each stage l

4 Reconstruct (from cell average to pointwise) the fluxes f+ and f− at cell

edges f
(k)

j+ 1
2

= f−(x+
j+1/2, t

n + ck∆t) + f+(x−j+1/2, t
n + ck∆t)

5 Evolve the conservative pointwise variables

un+1
j = unj −

∆t

∆x

ν∑

l=1

blKl

Kl = f
(l)

j+ 1
2

− f (l)

j− 1
2
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Conservative correction

Application to gas dynamics

Classical Sod problem solved using primitive variables as predictor

WENO 2-3

WENO 3-5
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Conservative correction

Stability analysis: a (somewhat) negative result

Consider linear convective equation

ut + (vu)x = 0,

Evolve by conservative FD scheme:

duj
dt

= − 1

∆x

(
f̂j+ 1

2
− f̂j− 1

2

)
,

The numerical solution is computed as

un+1
j = unj −

∆t

∆x

s∑

`=1

b`

(
f̂

(`)

j+ 1
2

− f̂ (`)

j− 1
2

)
.

u
(`)
j = un(x

(`)
j ), x

(`)
j = xj − vc`∆t

Look for Fourier modes
unj [ξ] = ρneijξ,
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Conservative correction

Stability analysis

Use Fourier interpolation for arbitrary x

un(x) = ρneixξ/∆x.

Compute the non conservative semilagrangian stages

u
(`)
j = un(x

(`)
j ) = ρn exp(iξ(xj − v∆tc`)/∆x) = ρneijξe−ic`aξ,

Where a = v∆t/∆x (Courant number). From this obtain the amplification factor

ρ = 1− iξa
s∑

`=1

b` exp(−ic`aξ).
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Conservative correction

Analogy with A-stability

Test equation for A-stability

w′(t) = λw(t), w(0) = 1

Exact solution
w(∆t) = eλ∆t = ez,

Identity obtained observing that
∫ 1

0
ecz dc = (ez − 1)/z:

ez = 1 + z

∫ 1

0

ecz dc.

Using exact Fourier interpolation, the error is due to the use of quadrature rule to
compute the integral:

R(z) = 1 + z

s∑

`=1

b`e
c`z 6= ez

[
ρ = 1− iξa

s∑

`=1

b` exp(−ic`aξ)
]
.

Comparison with the expression for ρ gives ρ = R(−iξa).
It turns out that |ρ| < 1 cannot be satisfied unconditionally on a.

Giovanni Russo (DMI) Semilagrangian methods for the BGK model 77 / 82



Conservative correction

Optimal quadrature formulas: given s stages, choose the scheme of order s with
the largest stability region.

Simple optimal formulas achieve:

s = 4, a∗ = 4.81
s = 8, a∗ = 9.41
s = 12, a∗ = 13.77

The function |ρ| − 1 is given by

−50 −40 −30 −20 −10 0 10 20 30 40 50
−1

−0.8

−0.6

−0.4

−0.2

0

0.2
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|ρ
|−

1

|ρ|−1 vs y, for s = 4, 8, 12
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s =  8
s = 12
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Conservative correction

The bad news

Numerical codes for the single scalar equation with such schemes show
instabilities for some CFL numbers much smaller than a∗.

For example: using a third degree polynomial (4th order space interpolation)
rather than Fourier interpolation, s = 4, one obtains instability in a neighborhood
of a = 2.6 (instead of 4.81).

1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

2

4

6
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x 10

11 Error at t=200 as a function of the CFL number, s = 4, cibic space interpolation

CFL

||u
−

u ex
a||
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Conservative correction

The instability disappears for larger values of a, up to about the theoretical value
a∗ = 4.81.

Possible solutions (work in progress):

check stability of different stencils and force nonlinear reconstruction to
choose the stable stencil

reformulate the whole stability analysis replacing Fourier interpolation by
polynomial interpolations

Basic question: is this of any use, or there is no way to make such
conservative correction stable in practice?
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Conclusions

Conclusions

Semilagrangian schemes are very promising for kinetic equations because:

Non conservative schemes allow high order accuracy and large CFL numbers

For BGK high accuracy in space and time can be reached, using RK or BDF.

RK are more accurate, but BDF appear are more efficient.

No formal stability restriction on CFL. In practice CFL is restricted by
accuracy.

Schemes without interpolation may be more efficient (in some cases).

A general technique is proposed to construct a conservative scheme starting
from a non conservative one.

Deeper analysis is needed to understand and improve the stability property of
such conservative correction.

Thank you !
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from a non conservative one.

Deeper analysis is needed to understand and improve the stability property of
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