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eThe Vlasov equation with C! interaction potential has been de-
rived from the N-body problem of classical mechanics with O(1/N)
coupling constant in the limit N — oo (Neunzert-Wick 1973, Braun-
Hepp 1977, Dobrushin 1979)

Problem 1: What is the convergence rate?

eThe N-body Liouville equation is known to describe the semiclassi-
cal limit (as & — 0) of the N-body Schrédinger equation

Problem 2: Can one pass to both limits and derive the Vlasov
equation directly from the N-body Schrodinger equation? What is
the convergence rate?

oOn Pbm 1: see Dobrushin, Func. Anal. 1979, Mischler-Mouhot-
Wennberg PTRF 2015

oOn Pbm 2: see Pezzotti-Pulvirenti Ann. H. Poincaré 2009, and
Graffi-Martinez-Pulvirenti M3AS2003,
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Neunzert-Wick's+Braun-Hepp's approach of the MF limit

eClassical N-body problem with V € C%1(R9) even (= VV/(0) = 0)

=

: 1
Xj =&, 5j:_NZVV(Xj_Xk)

k=1

eProve that the time-dependent empirical measure

Mz

xi(8).ex(t)—f as N — oo
k:

where f = f(t,x,£) is a solution of the Vlasov equation
Oef (%, 8) + {31€7 + Vi(t,x), f(£,x,£)} = 0
Vite.x) = [ [ Vix= ey ) dvde
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Dobrushin’s propagation estimate

Set

N
dN(t) = diStMK}l ( Z «(t),Ek t)7 >

k=1
Denoting L := Lip(V V), Dobrushin proves that

dn(t) < dy(0)e?t

Choose (x(0), £x(0)) for k > 1 independent with distribution f|,
Law of large numbers = dy(0) — 0

Convergence rate in LLN in terms of MK distances: Fournier-Guillin
PTRF2015
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Monge-Kantorovich(-Rubinshtein) or Vasershtein distances

Let p > 1 and p, v € Pp(RY) with bounded moment of order p
Coupling of y,v: any m € P(R? x RY) s.t.

J[ 660+ stMatadn) = [omtan + [wtmay)

Set of couplings of y, v denoted M(u, v); define

1/p
dis o) = __inf ([ 1oyt )

weM(p,v)

This distance metrizes the topology of weak convergence on PP(RC’)
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Difficulties/Shortcomings

eFor the MF limit in classical mechanics: the approach with the
empirical measure systematically involves the quantization error —
e.g. the discrepancy of the sequence of phase-space points

eFor the semiclassical+mean-field limit: at present there does not
seem to be any convenient analogue of the notion of empirical mea-
sure in quantum mechanics. Likewise, is there an analogue of Monge-
Kantorovich distance in quantum mechanics?

The mean-field limit in quantum mechanics is obtained by methods
different from Dobrushin's — based on the BBGKY hierarchy, or
on 2nd quantization, or on convergence estimates in operator norm
(Pickl LMP2009), all of which are not uniform as 2 — 0
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AN EULERIAN CONVERGENCE ESTIMATE]|

’FOR THE MEAN-FIELD LIMIT IN CLASSICAL MECHANICS‘

F.G.-C. Mouhot-T. Paul: Commun. Math. Phys. 343 (2016), 165-205

Francois Golse Mean-Field of Large Particle Systems



An alternative strategy

eSeek to estimate
distuk 2((t), Fa(t))

where Fp is the solution of the N-body Liouville equation and

FR,(t) = /FN(t)dyn+1d77n+1...dyNdT]N

instead of

N
_ 1
distmk 1 <f(t)a N Z 6(Xk7§k)(t)>
k=1

eLook for an Eulerian analogue of the Dobrushin argument, avoiding
the use of classical trajectories

eAll the steps in the estimate should have clear quantum analogues
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Initial state

elnitial data for Vlasov's equation: ' € P,(RY x RY)

elnitial data for N-body Liouville Fj7 € P5((RY x RY)N) symmetric
in the phase-space variables

Notation:
Xn o= (x,.oxn), =n = (&, 8n)
YN = (y17"'7yN)7 HN = (7]17”-777N)

For each o € Gy, set

o Xn = (Xo(1)s -+ » Xo(N))

Initial coupling: P € Ns((fm)®N Fin) — s means invariant by

(XN,EN7 YN,HN)i—)(O'~XN,O'~EN,O'-YN,O'~HN), U€6N
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Vlasov vs Liouville dynamics

Vlasov equation:

(Oe+&-Vi)f =VVixpr-Vef =0, f|,_ = fin

Hence

(Or + =N - Vi )FEN = ZVV*pr(t xj) - Ve, fON

j=1
Liouville equation
N
1 in
(O +Hy - Vvy)Fn = 4 S VV =) Vi Fn,  Fal_o=FN
j k=1
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Main result

Theorem A
Assume that the potential V is even with VV € WL ®(RY). Let
f(t) be the solution of the Vlasov equation with initial data £ and

Fn be the solution of the Liouville equation with initial data Fr.
Then

distu o(F(1), FA(0))? < - distuao((F) 2N, Fig e/

+(2||VV||LOO)2 et — 1
N A

for all t > 0, with

A =2+ max(1,2 Lip(v\/)z)
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Comparing Thm A with other results

eCase of Lipschitz continuous interaction force
Mischler-Mouhot-Wennberg PTRF2015
FG-Mouhot-Ricci KRM2013

distmi 1 (F (1), Fi(t)) = O(eM /N (d+4))

eCase of singular interaction force
Hauray-Jabin (Ann. Scient. ENS2015): O(r~*) witha < 1ifd > 3

eSingular interaction force with vanishing truncation
Pickl-Lazarovici (arXiv:1502.04608), Lazarovici (arXiv:1502:07047)
Coulomb or Newton with truncation of order N—1/3+¢
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Dynamics of couplings

Lemma 1 Let t — P(t) € P((R? x RY)?) satisfy P|,_, = P™ and

(0 + :N -Vxy+Hn-Vy,)P

=> (vv*x pe(t, %) Ve, + NZVV VT,J) P

j=1
Then P(t) € N(F(t)®N, Fy(t)) for each t >0, i.e.

/P(t)dYNdHN = f(t)*N, /P(t)dXNdEN = Fp(t)

Proof: Integrate both sides of the equation for P in (Yy, Hy) and
in (Xn,=n), and use the uniqueness property for the Vlasov and the
Liouville equations

Francois Golse Mean-Field of Large Particle Systems



The quantity Dpy(t)

Definition For each P € Ms((fiN)®N Fim), set
LM
Du(t)i= [ 4 3o~ wl + &~ )P(D)
j=1

Lemma 2
DN(I') > diStMK72(f(t), F,%,(t))z

Proof: By symmetry of P(t), one has

Du(t) = /(\xj YRl —mP)P(t) forall j=1,...,N

Bound on distymk o(f, F,%,) = moment bound for a 1st order PDE
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The dynamics of Dy(t)

Notation for Yy = (y1,...,yn), We set
1 N
Hyy -= N Zé_yj
j=1

eMultiplying by (| Xy— Yn|?+|=n—Hn|?) each side of the equation
for P and integrating in all variables

Dn(t) < Dn(t)

2 N
+/NZ(VV*X pr(x) = V'V x pixy (%)) - (§ — mj) P(t)
j=1

9 N
+/NZ(VV*MXN(XJ)—VV*MYN(YJ))'(ﬁj—nj)P(t)

= DN(t) + /N(t) + JN(t)
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Controling Iy and Jy

Since VV is Lipschitz continuous

In(t) < max(1,2Lip(VV)?)Du(t)
On the other hand

1 N
() < [ SS9V * (or = x5 Por (0 + D)
j=1

Lemma 3 [Quantitative LLN] Elementary computations show that

/|VV*(Pf - ux,\,)(xl)yzp,c(t)‘@’\’ < QHVVNHL°°)2

Conclude with Gronwall's lemma.
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FROM N-BODY SCHRODINGER TO VLASOV

F.G.-T. Paul: arXiv:1510.06681
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The method

Task 1: define a “pseudo-distance” between a quantum density (op-
erator), and a classical probability density

Task 2: bound the amplification of this pseudo-distance under the
joint quantum and classical dynamics

Task 2 will be formally similar to the classical computation above —
replacing Poisson brackets with commutators, integrals with traces. . .
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Coupling quantum and classical densities

Density operators on § := L%(R9)

p=p 20, tr(p)=1 < peDH)

Couplings of p € D(£)) and p probability density on R? x R?
(x,€) = Q(x,&) = Q(x,£)* € L(9) s.t.Q(x,£) >0
tr(Q(x,€)) = p(x,§), // Q(x,&)dxd¢ = p

The set of all couplings of the densities p and p is denoted C(p, p)
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Task 1: defining the pseudo-distance

Cost function comparing classical and quantum “coordinates” (i.e.
position and momentum)

an(x,€) == |x —y|> + |+ iV, |

Define a pseudo-distance “a la” Monge-Kantorovich

1/2
Enlp.p) = <Qe'c“£ ) //R el s))dxds)

Analogous to the quadratic Monge-Kantorovich distance distyk 2
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Quantum vs. classical dynamics

Quantum Hamiltonian
N 1
o 1,2 ,
Hy .—Z—§h ij—l—N Z V(yj — y«)
Jj=1 1<j<k<N

N-body von Neumann equation
i
Otpn,p = *ﬁ["f"lwv PN,
Vlasov equation

Oef (t,%,8) + {3117 + Ve (t, x), f(t,x,£)} =0
Vi(t,x) = / / V(x — y)(t, y. €)dyde
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Symmetric densities and marginals in the quantum formalism

The density operator py, y is an integral operator with integral kernel

Rﬁ,N(t7X17"‘7XN7y17' "7.yN)

Since particles are indistinguishable, py n(t) is a symmetric density
operator for all t:

Rﬁ,N(tvxa(l)v < X (NYs Yo (1) - - 7yO'(N))
= R]‘L’N(t,xl,... S XNs Y15 7yN), forall 0 € Gy

The 1st marginal density operator p‘,fl y has integral kernel

1 .
Run(t, x1, y1) -=/Rh,N(t,Xl,ZL.-.>ZN7)/1,Z2,~-7ZN)C/22.-.C/ZN
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Task 2: propagating the pseudo-distance

Thm B Let " = fi"(x,€) € L2((|x]? + |€|*)dxd€) be a probability
density, and pi . € DS(Hy). Let f and pn , be the solutions of the
Vlasov equatioﬁ and the von Neumann equation resp. with initial
data " and p"N"ﬁ. Then

1 i i
En(F(£). i () <3 En((F7)°N, pfin)e’

2VV| =) et -1
N—1 r

Here I = 2 + 4 max(1, Lip(V(V))>2.
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Husimi transform and lower bound for Ej

Wigner transform: if p € D(L2(RY)) with integral kernel R

Walpl(x,€) == m /Rd e CYR(x + %hy,x — fhy)d

Husimi transform:

Walpl(x, €) := "</ * W] (x, €) >

Lemma 1: Let p be a probability density on R? x R? with finite
2nd order moment, and p € D($)). Then

En(p, p)* > distuk 2(p, Wilp])* — 3dh
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Toplitz operators and upper bound for E;,

eCoherent state with g, p € RY:

\q+ ip, h) = (wh) /4~ x—al/2hgipx/n

eWith the identification z = g + ip € C¢

OPT (1) = by [ 2.1z hlutdz) . OPT(1) =1

Lemma 2: Let p be a probability density on R? x R? with finite
2nd order moment and . a Borel probability measure on RY x RY.
Then

En(p, OPy ((2rh)?p))? < distmk 2(p, 1)* + 5 dh
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From N-body Schrodinger to Vlasov: convergence rate

Corollary Let f" = fi(x, £) € L}((|x|?+|¢|?)dxd€) be a probability
density. Let pjj ; = OP[[(f")2N]. Let f and pp  be the solutions
of the Vlasov equation and the von Neumann equation resp. with
initial data £ and pi' .. Then

distw2(F(t), Wilph (D)% <Ldh(e™ + 1)
(2] VV]|p=)? e — 1
N-—-1 I

with I = 2 + 4 max(1, Lip(V(V))>.
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Conclusion (in the form of an advertisement...)

We have presented a new method for deriving mean-field limits of
large particle systems

eno hierarchies, no CK syndrome = global in time

eEulerian formulation = also works for the quantum pbm

emeasures convergence rate with MK-type distances = uniform in &
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The most important message in this talk...

|BEST WISHES TO PROFS. SONE AND AOKI|
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Figure: Profs. Y. Sone and M. Cannone (Kyoto 2013)
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Figure: Profs K. Aoki and S.-H. Yu (Kyoto 2013)
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