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TRANSPORT THEORY AND STATISTICAL PHYSICS, 21(4-6), 403-416 (1992)

October 1991:
FO U rt h | nte rn at i O n a | AN EXACT SOLUTION OF THE BOLTZMANN EQUATION FOR A BINARY MIXTUR

A. Santos and V. Garzd

Workshop on s 0 e

Universidad de Extremadura
06071 Badajoz, Spain

Mathematical Aspects S o

o~

The set of coupled Boltzmann equations for a binary mixture of
"colored" Maxwell molecules in a steady shear flow state has been

| |
Of Fl U I d a n d P | a S m a solved. Color diffusion is generated in the system by means of an
external field. The velocity moments can be expressed in terms of the
solution of a quartic equation. In particular, the color conductivity
and the shear viscosity coefficients have been obtained as nonhnear

D y n a m I C S / Kyot O functions of the shear rate and the field strength.

1. INTRODUCTION

One of the main objectives in kinetic theory is the search for
exact solutions of the nonlinear Boltzmann equation. Those solutions
are generally hard to find, especially due to the mathematical
difficulties embodied in the Boltzmann collision term. The interest
for exact solutions has been greatly stimulated by the discovery of an
explicit solution for Maxwell molecules in a spatially homogeneous
situation, the so-called Bl(w-mocle.l In the case of inhomogeneous
states, the most physically interesting solutions correspond to planar

shear flow at uniform temperature and density (usually referred to as

"uniform shear flmlv")2 and steady heat flow at constant pressure.3

Both solutions refer to Maxwell molecules and are constructed in terms

of the velocity moments of the distribution function.
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November 1997:
Prof. Sone visits Badajoz

From: Yoshio Sone <sone@sum

‘Title

To: "Andres Santos™ <andres@! The plate with's CReE
. . -The vanes detecting g horizontal wind
Subject: RE: Some small details Expariment 1 - SRR flow: induced near the ver., QB of the plate

t vertically with its longer edges ip the vertical directior

Date: Wed, 12 Nov 1997 09:44:3 X | T
Dear Professor Santos, i
Thank you very much for your ac , o Side/ 111 side) Cnith same winin 1]

tical flow induced near the horizontal edge of the plate
t vertically with its longer edges in the horizontal direction

| am very happy to give a seming
The title is ]

" Flows induced by temperature §
and its finite effect on the behav|

The video of flows induced by tel ———
Wesdnesday is convenient to me

Best Regards, L
Yoshio Sone




March-April 19909:
JSPS Fellow, Kyoto
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July 2008:
RGD 26, Kyoto
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January 2009:
Prof. Aoki visits Badajoz

ANUNCIO DE SEMINARIO
DEL DEPARTAMENTO DE
FISICA

Taylor-Couette flows of a vapor-gas mixture:
Bifurcation in the near continuum regime

Prof. Kazuo Aoki
Kyoto University

e Jueves, 29 de enero de 2009
e |2 horas
e Sala de Tesis de la Facultad de Ciencias
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July 2009:
YITP long-term workshop, Kyoto

2%0.07.2000 19:07
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May 2016:
Sone & Aoki’s fest
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il

' @== Andrés Santos
m u Universidad de Extremadura. Badajoz, Spain




Outline

* Introduction. Granular hydrodynamics

* The inelastic rough hard-sp
(IRHSM). Navier-Stokes coe

e The inelastic Maxwell
Burnett coefficients

* Conclusions
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What is a granular material?

. Itis a conglomeration of discrete solid, macroscopic
particles characterized by a Whenever\
the grains collide. -

. The constituents must be large enough sumﬂw
are not subject to thermal motion fluctuations. Thus, |

the lower size limit for m. .




What is a granular fluid?

When the granular matter is driven and
energy is fed into the system (e.g., by p H YS | [: S I [I I] H Y
shaking) such that the grains are not in

constant contact with each other, the
granular material is said to fluidize.

RPRIL T996

Granular gas: Mean free path much larger
than the grain size

.
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KINETICTHEORY

GRANULAR FLOW
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Granular gas: Dissipative collisions

8815 events speed 10 200 particles

Demo by Sergei Mechov
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(Cartoon by Bernhard
Reischl, University of Vienna)

Boltzmann equation:

Dissipative collisions
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HYDRODYNA
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Hydrodynamic balance equations

Mass conservation: Din +r
Momentum conservation: pDiu

2 -
Energy dissipation: DT + @(V q+P:Vu

Dimensionality

(DtEat+UV)
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Navier-Stokes (NS) constitutive equations

SV —
Claude-Louis Navier George Gabriel Stokes Jean-Ba
(1785-1836) (1819-1903)

E@'jv i u) — Mb04j \

Shear viscosity Bulk viscd'siy-_ ¥

Pij = p(sij —1n (VZ’LLJ -+ Vjuz- .

Dufour-like coefficient
q=—-A\V1T — uVn ¢ =¢% —Eva

Thermal conductivity Cooling rate trans
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Methodology: Chapman-Enskog method

4 a :

i

-
= ) o

Sydney Chapman David Enskog
(1888-1970) (1884-1947)

F=FO 4 D) 4 &2 2 m

\ J \ J
Na\'/ier- Bur'nett
Stokes
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MODELS OF GR
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Standard model of a granular gas:
A gas of identical inelastic smooth hard spheres
(ISHSM)

Constant coefficient of normal restitution a

Elastic collision Inelastic collision

http://demonstrations.wolfram.com/InelasticCollisionsOf TwoSpheresi
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http://demonstrations.wolfram.com/InelasticCollisionsOfTwoSpheres/

PHYSICAL REVIEW E VOLUME 58, NUMBER 4 OCTOBER 1998

Hydrodynamics for granular flow at low density

J. Javier Brey
Fisica Teorica, Universidad de Sevilla, E-41080 Sevilla, Spain

James W. Dufty
Department of Physics, University of Florida, Gainesville, Florida 32611

Chang Sub Kim

Department of Physics, Chonnam National University, Kwangju 500-757, Korea

Andrés Santos
Departamento de Fisica, Universidad de Extremadura, E-06071 Badajoz, Spain
(Received 13 March 1998; revised manuscript received 8 June 1998)

The hydrodynamic equations for a gas of hard spheres with dissipative dynamics are derived from the
Boltzmann equation. The heat and momentum fluxes are calculated to Navier-Stokes order and the transport
coefficients are determined as explicit functions of the coefficient of restitution. The dispersion relations for the
corresponding linearized equations are obtained and the stability of this linear description 1s discussed. This
requires consideration of the linear Burnett contributions to the energy balance equation from the energy sink
term. Finally, 1t 1s shown how these results can be imbedded in simpler kinetic model equations with the

otential for analysis of more complex states.
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Hydrodynamic
order

Burnett 2014
(dD, Exact)

Navier-Stokes (NS) 2003 1998
(dD, Exact) (Sonine appr.) | (3D, Sonine appr.

Inelastic Inelastic Inelastic rough

Maxwell  smooth hard- hard-sphere
model sphere model model
(IMM) (ISHSM) (IRHSM)

Model complexity
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Outline

* Introduction. Granular hydrodynamics

* The inelastic rough hard-sp
(IRHSM). Navier-Stokes coe

e The inelastic Maxwell®
Burnett coefficients

e Conclusions
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Inelastic rough hard-sphere model
(IRHSM)

Material parameters:

Mass m

Diameter ¢

Moment of inertia | (k=41/mcd?)
Coefficient of normal restitution «
Coefficient of tangential restitution 3
a =1 for perfectly elastic particles

(=-1 for perfectly smooth particles
B=+1 for perfectly rough particles

This model unveils the inherent breakdown of equilibrium and energy equipartition in
granular fluids, even in homogeneous and isotropic states

Kinetic Theory and Fluid Dynamics: From micro to macroscopic modeling, May 26-28, 2016, Kyoto



Collision rules

Cons. linear momentum:

/ ! ) )
V,L-—I—Vj—VZ—I—VJ

Cons. angular momentum:
O'.
/ T~ /
Iwz-,j Fm 5 o XV,
I 5
= 1W; 4 -+ mEO' X Vi j

Relative velocity of the points

of the spheres at contact:

_ 0 <
Vij = Vij — 50‘ X (wz —I—wj)

Kinetic Theory and Fluid Dynamics: From micro to macroscopic modeling, |



Energy collisional loss '
1 o, 1 o 1 S \

Ei; = 5™MY; + 5™Y; + §Iw,b- 4= §ij :
z{j_E’i' - —(1—&2)?/

—(1—52)><--- |

Energy is conserved only if the spheres
» elastic (¢=1) and "
e either
e perfectly smooth (8=-1) or
e perfectly rough (G5=+1)

Kinetic Theory and Fluid Dynamics: From micro to macroscopic modeling, M



coefficient of normal restitution coefficient of normal restitution

coefficient of tangential restitution D = coefficient of tangential restitution

relative mass relative mass
impact parameter impact parameter
initial angular velocity of the left particle initial angular velocity of the left particle

time U time U
reference frame [laboratory| center of mass reference frame [labaratory| center of mass

energy logs (lab frame) = 0% energy loss (lab frame) = 0%

e e

Elastic & smooth Elastic & (perfectly) rough

coefficient of normal restitution B coefficient of narmal restitution

coefficient of tangential restitution U coefficient of tangential restitution

relative mass relative mass
impact parameter impact parameter
initial angular velocity of the left particle initial angular velocity of the left particle
time D time D
reference frame [laboratory center of mass reference frame  (laboratory) center of mass

energy loss (lab frame) = l"‘."o| energy loss (lab frame) = 27% ‘

e > e

Inelastic & smooth Inelastic & (perfectly) rough
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http://demonstrations.wolfram.com/InelasticCollisionsOfTwoRoughSpheres/
http://demonstrations.wolfram.com/InelasticCollisionsOfTwoRoughSpheres/

G. M. Kremer, A. S., and V. Garzo, Phys. Rev. E 90, 022205 (2014)
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Special limiting cases

Quantity Pure smooth Quasi-smooth limit  Perfectly rough an
(8=-1) (8 — 1)
. 24 24
g 1+a)(13—a) 1+ a)(19 — 7o)
o 5(1—a2)
N 64 48
(1+a)(9+7a) 25(1+ «)
. 1280(1 — ) 0
b T a) 0+ 70)(19 — 3a)
£ 0 0

L )

Brey, Dufty, Kim, Santos
(1998)

Kinetic Theory and Fluid Dynamics: From micro to macroscopic modeling, M



Kinetic Theory and Fluid Dynamics: From micro to macroscopic modeling, May 26-28, 2016, Kyoto




Thermal conductivity

LATT T T T
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Bulk viscosity (Vi # V= 2,9 ) “mbs ¥
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Cooling rate coefficient - .

Kinetic Theory and Fluid Dynamics: From micro to macroscopic modeling, May 26-28, 2016, Kyoto




Instability of the Homogeneous Cooling
State

Dual role of friction in granular flows:
attenuation versus enhancement of instabilities

Peter P. Mitrano, Steven R. Dahl, Andrew M. Hilger, Christopher J. Ewasko
and Christine M. Hrenyat

4 collisions
per particle

volume fraction ¢ = 0.3

L/oc =10

| 100 collisions
per particle

Vortices Clustering
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V. Garzo, A. S., and G. M. Kremer, in preparation

Linear stability analysis

n(r,t) = ng [l 4+ on*(r,t)
u(r,t) = ug +wvp(t)ou*(r,t) o dya(r,t),
T(r,t)= Ty(t)[1+6T*(r,t)]

o

Fourier-Laplace transform:

5ya (I‘, t) - 5ya;k,wez’k-r* e—w(k)s [I'*

Characteristic equation:
det [M(k) — w(k)l] = 0 = Dispersion relation
w(k) < 0 = Instability

Kinetic Theory and Fluid Dynamics: From micro to macroscopic modeling, M



V. Garzo, A. S., and G. M. Kremer, in preparation

Dispersion relations

Kinetic Theory and Fluid Dynamics: From micro to macroscopic modeling, May 26-28, 2016, Kyoto



ki (a, B) = /8¢ /5(A* — p*)

10—
00 02 04 06 08

a

The shear modes
(vortices) are more
unstable than the heat
mode (clusters), except
for high inelasticity and
medium roughness

Kinetic Theory and Fluid Dynamics: From micro to macroscopic modeling, May 26-28, 2016, Kyoto
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Comparison with the pure smooth case

Medium roughness
enhances instabilities,
while small and high
levels of roughness
attenuate it

Atten. Enhancement

nular flows:

attenuation

Kinetic Theory and Fluid Dynamics: From micro to macroscopic modeling, May 26-28, 2016, Kyoto 42



Comparison with preliminary
MD simulations

volume fraction ¢ = 0.05

(MD points, courtesy of Peter Mitrano)

Kinetic Theory and Fluid Dynamics: From micro to macroscopic modeling, May 26-28, 2016, Kyoto
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Outline

e Introduction. Granular hydrocyna

 The inelastic rough hard-sp
(IRHSM). Navier-Stokes'coe

e The inelastic Maxwell
Burnett coefficients

e Conclusions
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Hydrodynamic
order

Burnett 2014
(dD, Exact)

Navier-Stokes (NS) 2003 1998
(dD, Exact) (Sonine appr.) D, Sonine appr.

Inelastic Inelastic Inelastic rough

Maxwell ~ smooth hard- hard-sphere
model sphere model model
(IMM) (ISHSM) (IRHSM)

Model complexity
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Inelastic Maxwell model (IMM)

(1831-1879)

* First proposed by Bobylev, Carrillo & Gamba (2000),
Ben-Naim & Krapivsky (2000), Bobylev & Cercignani
(2002), Ernst & Brito (2002), ...

« The hard-sphere collision rate (proportional to the
relative velocity) is replaced by an effective (mean-
field) constant value.

« Otherwise, the collision rule remains unchanged.

Kinetic Theory and Fluid Dynamics: From micro to macroscopic modeling, May 26-28, 2016, Kyoto 46



Inelastic Maxwell model (IMM)

Boltzmann eq.: \
8tf(ra Vv, t) +~ Vv Vf(I', v, t) e J[I‘,V, t|f] h
ISHSM: - -

Twilf] = ot [ ave [ 450 (8-5) (8- 5) [a

IMM: 4
d ~ - / 0
Jvilf] = 2;2_5%/(1"2/(10' [O‘ 1f(V1)f(V2 .

1
T, ==
VvV X : Y 5
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Exact moments

Collisional moment of order £k = Linear combination of velocit

mfdeiVjJ[v,f] = —yp2(a@) (5

5 [ VI = (e

Kinetic Theory and Fluid Dynamics: From micro to macroscopic modelir



N. Khalil, V. Garz6, and A. S., Phys. Rev. E 89, 052201 (2014)

Results

5 Ao Th e
P( ) —alj (VN]T ddiZT) + O;Qp—y (Vivjp = +E(5@-jv2p

A _
+ ag,p—o(v TV, VeV dcsiij-VT

1 -
+ a7% [Dz’kaj — Wik 35@' (D1 D1 —
TA T\ A n
q§2) =} TOV + by —OV D + b3 I/O DZJVJT + by —

Yo
+ bﬁzo wigVp + b= 0PV, T+ bgp DVp,

1
D=V-u, D;; = §(V1‘Uj + V8
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Elastic limit (o — 1)

4(d—1) 4(1—~)
ai — d+2(’ ) az — (d(d—|—2) 7) a3 — —grp
2(d—1 2(d—4+2~
as —r _d(d——|—2)’ 6 —7 d A7 2, a
2(5d— 2) 2[d®+7d—6—2(d—1
by — d—|—2’ b2 = —g=ny@+ay> 03 CED
by — 24 b — 0 by — L2
5 d—l’ 6 ) 7 d(d— 1)(d—|—2

e Iixact results for Maxwell molecules if v = 0.
e First Sonine approximation for any potential if v =1 —

e Generalization to any d of Chapman & Cowling’s classical ¢

4
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Influence of inelasticity (IMM, exact)
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Hydrodynamic
order

Burnett 2014
(dD, Exact)

Navier-Stokes (NS) 2003 1998
(dD, Exact) (Sonine appr.) D, Sonine appr.

Inelastic Inelastic Inelastic rough

Maxwell ~ smooth hard- hard-sphere
model sphere model model
(IMM) (ISHSM) (IRHSM)

Model complexity
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Influence of inelasticity (ISHSM, estimated)
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Outline

. . .

e Introduction. Granular hydroc ynamvics

 The inelastic rough hard-sp
(IRHSM). Navier-Stokes'co

e The inelastic Maxwell™®
Burnett coefficients

* Conclusions
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ﬁ\s’;)/ 1“&
% TAKE-HOME MESSAGE

* IRHSM: Roughness (and
inelasticity) have a large impact
on the NS transport coefficients.

* IMM: Exact results for the Burnett
coefficients can be obtained.
They can be used to estimate the
coefficients for the ISHSM.

Dynamics: From micro to macroscopic modeling, May 26-28, 2016, Kyoto



What people think about
during your conference talk
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Origin of the singular behavior in the quasi-smooth
limit

Cooling
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